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This Chancy, Chancy, Chancy World?
Leonard Rastrigin, Mir Publishers, 1984. ‘

Uncertainty is the only certainty ...
John Allen Paulos, Temple University, Philadelphia ‘




1. Introduction

What is uncertainty?

A phenomena that cannot be predicted exactly is uncertain.

Sources of uncertainty (some examples)
@ measurement errors
@ random external disturbances, e.g. wind speed, solar radiation
intensity, ambient temperature and pressure, news, market
prices, etc.
@ model inaccuracy

A model is only a simplified representation of a system.

@ system's inherent uncertainty

Heisenberg's uncertainty principle: We cannot measure the
position and the momentum of a particle with absolute
precision




1. Introduction ...Characterization of uncertainties

o lIdentification and classification of high-impact uncertainties
is an important initial step.

A rough classification of uncertainties:
measurable and non-measurable (non probabilistic)
uncertainties

Measurable uncertainties:

@ Uncertainties that can be characterized through statistical
measures like: mean, variance, covariance, probability
distribution, etc.
= these are called random variables

Non-measurable uncertainties:

@ Uncertainties with no definite distributional characteristics
= uncertainties with no sufficient historical or measurement
data; with ambiguous distributions, etc.
= Best practice: define a confidence-interval or set to which
such uncertainties belong to.



1. Introduction ... Uncertainties in Applications
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1. Introduction ... Uncertainties in Applications...
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1. Introduction - Impact of uncertainties

Distribution
of Inputs

Distribution

/ \ of outputs

Consequences of uncertainties:

@ future system behaviors cannot be predict precisely

@ system becomes unreliable with performance degradation
@ risk of violation of constraints

@ etc.



2. Optimization under uncertainty - History

Optimization under uncertainty

e Dantzig 1955 (stochastic optimization with recourse)
Chance constrained optimization

@ Charnes, Copper & Symonds 1958, 1959.

@ Miller and Wagner 1965 (joint chance constraints)
Major contributors to CCOPT since the 1970’s:

@ Prekopa and associates 1972, 1973, 1995, 2001, 2011.

e Raik 1971, 1975

o Kall and Wallace

o Wets

@ Henrion, Rémisch, and associates

@ Nemirovski, Shapiro, and associates
Robust Optimization

@ Ben-Tal, Nemirovski, Bertsimas,...



2. Optimization under uncertainty ... Text books and
references
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2. .... Text books and references...
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2. .... Helpful Prerequisites

Mathematical analysis (real and functional)

°
@ Mathematical optimization - theory and methods
o Convex analysis

@ Set-valued analysis

e Optimization on function spaces (e.g., PDE
constrained optimization)

e Predictive control of lumped (DAEs) and distributed
parameter (PDEs) systems




2. Optimization under uncertainty...

e Performance criteria: f (x, u,§)

e Process model: G(x,u, &) =

e Constraints: ( u,§) S
e V.

What is the best mathematical model for optimization under

.

uncertainty?

» No conclusive answer!
» It depends on type of application, available information on

uncertainties, purpose of optimization, etc.

A




2. Optimization under uncertainty...

Optimization with the nominal values ;. = E[¢] for the
uncertainties.

Standard deterministic \

in £
min f (x, u, 1)

subject to:

G(x,u,nu)=0
g(X7 UaM) <0.

@ This is a "plain vanilla" optimization problem.

@ It does not seriously account for the impact of uncertainties
and system robustness.



2. Optimization under uncertainty...

Meaningless N

minmax f (x, u, §)

TEIB s m ) uet{&eﬂ
subject to: ® subject to:
G(x,u,&) =0 G(x,u,&) =0
g(x,u,€) <0 el ) £C
S 7

50% Reliability N\

min £ [f (x, 4,€)] min £ [f (x, u,€)]
subject to: 4 subject to:
E[G(x,u,&)]=0 G(x,u, &) =0
Elg(x,u,8)] <0 g(x,u,8) <0,VE € Q.




2. Optimization under uncertainty...

Robust Optimization

Robustness

As the going gets tough, the tough gets going.
Billy Ocean, 1985.

Hold on what ever happens:

gx,u,§) <0,V e mgxg(x, u,§) <0.

= Take no risk of constraint violation. Expensive!!!

But, practically and frequently, under uncertainty

e constraints on future outcomes are bound to be violated
e instead opt for reliability and fault tolerance
e In fact, No Risk, No Fun!




3. Chance constrained optimization

(CCOPT) muin E[f(x,u,8)] (1)
subject to:

G(x,u,€) =0, (2)

Prig(x,u,§) <0} > a, (3)

ue U. (4)

The major objects of investigations in CCOPT are
chance constraints. J




3. Chance constrained optimization...

u € R™ is a vector of deterministic decision variables

x € R" is a vector of random state variables (due to eqn. (54))
U is a compact subset of R,

(22, A, Pr) - a complete probability space,

A is a o-algebra

Q C RP is a Borel set,

Pr: A — [0, 1] probability measure,

& - a random variable with a continuous joint pdf ¢(¢),

Pr{A} = [, #(£)d¢, for A A,

E[‘] - the expected-value operator,
f,G,g:R™xR" x RP — R are at least one-time differentiable

®© ©6 6 6 6 6 06 06 06 0 o



3. Chance constrained optimization ...

The expression Pr{g(x, u,&) < 0} represents

Pri¢e Q| g(x,u,¢) <0}

e Chance (or probabilistic) constraint
Prig(x,u,§) <0} > a,

where o € [0,1] is a pre-given (user-defined)
probability (reliability) level
@ The probability (reliability) level « is usually

3 <a < 1;ie. above average reliability. Commonly,
a=0.95 a=0.98, a=0.99, etc.

@ « near 1 is too conservative, & = 1 deterministic.




3. Chance constrained optimization ...Definitions

e Probability function

p(u) = Pr{g(x, u,€) < 0}
of the chance constraint in CCOPT.
o Feasible set of CCOPT is

P:={u € U| p(u) > a}.




3. Chance constrained optimization ...

Standard assumptions

@ The probability measure Pr(-) is associated with the
joint pdf ¢(-) through

dPr(§) = ¢(§)d¢
(Radon—Nikodym Theorem)

o Measure-zero property
Given u and x

Pri€¢ e Q| g(x,u,§)=0}=0




3. CCOPT ... Equivalent representations

o (probability of to be) + (probability of not to be)
=1

Pr{g(u,x,{) < 0}+Pr{g(u’x,§) > 0} =1

Hence, Pr{g(u,x,&) <0} > « is equivalent to

Pr{g(u,x,£) >0} <1-—a.




3. CCOPT ... Equivalent representations ...

@ Integral representation of chance constraints

Prig(u,x,€) <0} = Pr{teq|g(uxE) <0}
— / o(€)de >

{€€Q | g(u,x,£)<0}

where ¢(&) is the probability density function of &.




3. CCOPT ... Reliability and Risk

@ No reliability: If « =0, then P = U C R™
= With no guarantee, any decision is feasible!
= 100 % Risky!

@ No Risk: If & =1, then

Pr{g(u,x,§)<0}>1 = Pr{g(u,x,&) <0}=1

= For a =1, CCOPT is a robust optimization problem!

= Thatis, « =1 in CCOPT leads to a conservative
decision.




3. CCOPT ... Reliability and Risk...

i <
Let I(s) := { é’ :i z > 8’ . Then

Ell(g(x, u,€))] = Prig(x, u, &) < 0}.

| Hetx. w0900t =1 = [ o(e)de
Q Q

= [ Welxu.8) - 16(€)de =0
Q

= [I(g(x,u,&)) — 1] = 0, for almost all € Q
= g(x,u,§) <0, for almost all £ € Q



3. CCOPT ... Single or Joint Chance Constraints

In case of several random inequality constraints:
use either

(i) Single chance constraints

Prigi(x,u,&) <0} > a;,i=1,...,m.

or

(i) Joint chance constraints

Prigi(x,u,£) <0,i=1,....,m} > .

Joint-chance constraints pose more difficulties. We focus
here only on single chance constrained problems.



3. Chance constrained optimization - compact form

@ Assumption : Under some standard assumptions (e.g.,
IFT), the equation G(x, u,&) = 0 is can be solved to
obtain x(u, &), for a given u and a realization of £. So
that

The standard form

J

(CCOPT) muin E[f(u,§)] (5)
subject to:
Pr{g(u,§) <0} > a (6)

ueU. (7)




3. Chance constrained optimization ...

Objective

To determine an optimal decision variable u* for the objective
function E [f(u,&)] guarantee the satisfaction of the chance
constraint Pr {g(u,£) < 0} > « with a given probability level
a.

= The optimal decision variable u* gurantees
Pr{g(u,&) <0} > «; while accepting a (possible risk of)
violation of constraints by (1 — «) i.e., Pr{g(uv*,§) >0} <1—a.

In the face of uncertainty, allowing a degree of
constraints violation may yield a performance gain, but
it may still constitute some consequences (risk)




Chance constrained optimization with variance
minimization

A general form

(CCOPT) min {71 E [f(u, )] + 72 Var [f(u, )]} (8)
s.t.

Prig(u,§) <0} >« (9)

ueU. (10)

@ The parameters 1,7, > 0 are weighing factors.

@ By choosing a larger value for either 7, or 7,, we can decide which
one (E [f(u,&)] or Var [f(u,§)]) we would like to minimize the most.

@ Traditionally, we have 73 =1 and , = 0 so that the objective
consists of only E [f(u,£)] (standard CCOPT).

o If f(u,&) = f(u), then we have E[f(u,&)] = f(u) and
Var (u &)] = Var[f(u)] =0.



A simple example - (a) Random decision

Consider the problem

(P) max {uy + uo} (11)
ueR?
subject to:
vl 4 ud <54€. (12)

For each fixed value of £, the optimal solution (decision) will be

()

If £ is random, then u* is a random decision. Dangerous!



A simple example ... (b) chance constrained optimization

Suppose ¢ ~ N(0, 1) with distribution function ®(x) = [~ ¢(£)d<.

(CCOPT) max {u1 + o} (13)
u€R?
subject to:
Priuvi +u} <5+€}>a. (14)

Note that
Priv?+u3<5+¢=1—Pr{v?+u3>5+¢&=1—&(f +ud—5)
Hence,

Pri?+u3<5+¢&>a = B+u3-5<07(1-a).

Hence, optimal solution of CCOPT

vt (a) = (\/5+<1>12(1—0¢)7 \/5+¢;(1—a)>
. . . . * o 54+d-1(1—«
and optimal objective function value f(u} () = 24/ %




A simple example ... (c) Robust optimization formulation

(RO) max {u; + w2} (15)
u€R?
subject to:
v+ s <54+ VEEQ, (16)

for Q = [pe — 4o¢, pe + 4o¢] - a 99% confidence interval for & ~ N(0, 1).
Feasible set of RO:

ﬂ {ueR | +u3 <5+¢&={ueR?|uf+uj<1}.
56[74)4]

Hence, solution ug, = (72, 72) with the optimal objective function

value f(uko) = V2.



A simple example ...(d) Comparison of CC and RO

e For o = 0.98, the optimal value of CC

5+ ¢-1(0.02 5 —2.0537
f(ur(0.98)) = 2 +2() 2| N 24275
while f(uko) = V2.
e accepting a risk of constraint-violation by 1 — « = 0.02 brings a
profit f(u?.(0.98)) = 2.4275.
e while taking no risk brings the lower profit f(ujo) = V2.

= |n scale of millions, the difference can be enormous.

Caution::
Not all CCOPT problems are simple to solve like (13)-(14).



Problems that lead to CCOPT ... Probability maximization

Maximum probability problem

@ Find a decision v to for a high probability

max Pr{g(u,&) < 0}

ucRm
of winning a game, a lottery, attaining a goal, etc.
Can be written as

(CCOPT) max
ueR™, ae[0,1]
subject to:

Prig(u,€) <0} > a. (18)

o' (17)




Problems that lead to CCOPT ...Portfolio optimization

Portfolio optimization

Total value of a portfolio at the end of a given time period:

n

Flu,§) = wg=¢"u

i=1

Objective function: E [éTu] — maximize.

ui, i =1,...,n, investment proportions on n assets
K desired total return

Chance constraint:
Pr{f(u,§) < K} <1l—a < Pr{f(u,&) > K} > «

Optimization problem:

(CCOPT) max E [gT u] (19)
sit. e u=1 (20)

Pr{i¢"u> K} > a. (21)



Problems that lead to CCOPT ...Financial Risk Metrics

Value at Risk (VaR)

Mathematical definition

@ Let g: U x Q — R - scalar valued function
@ g(u,&) defines a loss under a strategy u € U.
The expression
Pr{g(u, &) <~}

represents the probability of the loss g(u, &) to lie below an admissible
loss level ~.

VaR(g(u,§); a) = igf {7 | Pr{g(u,§) <~} > a}.

=sup, Pri{g(u,§) >7} <1-a
= The worst loss g(u, &), for a decision u, is expected to occur with
a probability level less than 1 — a.




Problems that lead to CCOPT ... Risk Metrics

Conditional value-at-risk (cVaR)

Conditional value-at-risk of a portfolio is the expected return,
conditioned on the return being less than or equal to VaR.

Pflug 2000 (Optimization Formulation)

The conditional value at risk (cVaR) of a random variable
Z = g(u,&) is defined as

cVaR(Z;a) = nf {B + ﬁE (z- ﬁ)+]}

In general we have cVaR(Z; o) > VaR(Z; ).

\. J

References:
@ G.C. Pflug: Some Remarks on the Value-at-Risk and on the Conditional Value-at-Risk. In: Probabilistic
Constrained Optimization: Methodology and Applications, (Uryasev ed), Kluwer, 2000
@ R.T. Rockafellar and S. Uryasev: Optimization of Conditional Value-At-Risk. Journal of Risk 2 (4), 21-51,



Chance Constrained Optimization ...Properties..

Fundamental questions

Given p(u) = Pr{g(u,&) < 0}.
— Does p(u) have an analytic expression?

— When is p(u) continuous?

— What are the convexity properties of p(u) and when is
CCOPT a convex optimization problem?

— When is p(u) differentiable?

— How to evaluate p(u) for a given u?

— How to solve the optimization problem CCOPT?




4. Linear Chance Constrained Optimization

(A) Linear CCOPT with single chance constraints

(LCCOPT) min E [CTU} (22)
ueRm
s.t.
Pr{alu<b}>aji=1,....,m (23)
u>0, (24)
where:
@ the decision variable u = (uy, ..., u,,)T € R" is deterministic;
T
)1
a
@ any one or a combination of the matrix A= | 7 | , the
am

vectors ¢ € R" or b € R™ can be random.



LCCOPT ... Deterministic representation...

We consider three cases.

(i) The matrix A = (aj) is random, b and c are deterministic.
Assumption: The elements aj; of the matrix A are
independently normally distributed with mean u;; and
standard deviation oyj; i.e. ajj « N (ujj, o).

o Define d; := a'u = iy, i=1,...,n.
e d; is a linear combination of normally distributed random
variables.

o Foreach i€ {1,2,...,n}, d;is normally distributed; with
> mean: g = > ", pyx; (Exercise!)
» variance (standard deviation):
05 = Y1 0jjx7(Exercise!)

Hence,

Pr{a,Tu < b,-} > qj = Pr Za,-juj <bjp >a;=Pr{di <bj}>a;
j=1



LCCOPT ... Deterministic representation...

i - o.di

di— Hd;

d; bi— 1. .
—P{ d“d <ﬁ}2ai,/:1:m.

@ The random variable z; := ( : ) has a standard normal
distribution, i.e. z; ~ N(0;1),i=1:m.

Pr{di—ﬂd; < bi—ud;} :¢<bi_,ufdi>’
04; Od; 04;

where ®(+) is the cumulative standard normal distribution
function of z.
» Consequently, we have

b; — .
¢><'ud’> >ap,i=1...,m.
od;

> q)—l(a’_) g bi — Hd; > Udiq)_l(ai)a = 17 EERLLE

4
bi — Hd;
gd:

i



LCCOPT ... Deterministic representation...

where @71 is the inverse standard normal distribution function.

bi — Hd; > Ud,-‘:b_l(oéi)

& Z,ujuj + o Hay) Zaéuf — b <0.
=1

Jj=1

@ Therefore, an equivalent representation of (LCCOPT) is

(NLP) min ¢’ u
xERN

s.t.

Z,ujuj- + o Hoy) Zafjuf —b<0,i=1,2,...,m,
=1 =1

u>0.

This a deterministic nonlinear optimization problem (it is convex if
a € [0.5,1] not convex for 0 < o < 0.5).



LCCOPT ... Deterministic representation...

(ii) The vector b is random, the matrix A = (aj;) is and the vector
¢ are deterministic.
Assumption: The components of the vector

b" = (b1, ba, ..., bny) are independently normally distributed
with mean p; and variance o;,i =1,2,....m .
» Hence,

n
Pr {a,-Tu S b,'} = Pr Za,-JT-uJ- S b,'
j=1

" oalu— o
_ Pr{z_[—l ij ILI/bI < bl ,u’b; 2 a;

Op; T Op;

i i

Ob; Ob;

— n T
@Pr{b' by < 2 ’“"}gl—a,-.



LCCOPT ... Deterministic representation...

Since each o 25 have a standard normal distributor, it follows

i

i

,-1_ BTU'— b; n
¢ <ZJ_1 i & <l-aj& Za,—-}—uj—uj < o7 1—-a;)op,.

T p;
b =

e As a result we obtain

(LP) Xné]ilgn clu (25)

S.t.
al u < pp, + 01— ai)oy,i=1,2,...,m. (26)
u>0, (27)
v

which is a deterministic linear optimization problem.



LCCOPT ... Deterministic representation...

= (a1,a,...,an, b) random and
aix1 + axxa + ...+ anx, — b (a linear function).

o
— =
\_><
Mmooy
~
Il

If the components of the vector & are independently normally
distributed random variables, then

Prig(x, &)} = a

zn: E[a]xi + & (a) Z Var [aj] x? + Var [b] < E [b].
i=1 i=1

Exercise!

Note: For o € [0, 1], the values of ®~*(a) can be read from look-up tables.

Also use the Matlab function: y = norminv(p,mu,sigma).



LCCOPT ... Deterministic representation...

(iv) The cost vector a' = (a1, a,...,a,) =: &' is random.

Suppose £ = a' = (ay,as,...,an) be normally distributed (not
necessarily independent) random variables with mean p and covariance
matrix . Then the feasible set

P={ueR™| p(u) > a},

where p(u) = Pr{a"u < b} > a and b € R, can be exactly represented by
P = {u ER™ | p'u+ o Ha)VuTXu < b}

A

Proof. (Exercise!)

(i) First show that:

aeR" a~N(u",X)=a'u—bceRanda'u—b~
N(pTu—b,u"Zu)
(ii) Consider the two cases: when u'¥u =0 and u"Xu # 0, and apply
similar techniques as in above.

.




LCCOPT ...

Exercises:

Q Let

(2) Pr{alul + acur + aruz < b} >0.95

where a1, a2, a3 and b have the distributions A(1; 1), M(2;1),N(3; 1) and
N(4;1), respectively.
Verify that this chance constraint is equivalent to

up + 2up +3us + 1.6454 /u? + uZ + 02 +1 < 4.

@ Write the deterministic represetnation for chance constraints

Pr{3u1 +4u < 51} > 0.8
Pr{3u} — u5 < &} > 0.9,

where &1~ N(0;2) and & «~ A/(0.5;10).



LCCOPT ... Deterministic representation...

@ Closed-form exact deterministic representation is available
mainly when g(u, &) a special linear form w.r.t. £ and ¢(§)
Gaussian.

@ Multiplicative uncertainties, usually lead to nonlinear
determinstic represetntions. (cases (ii)-(iv))

@ Genrally exact closed form deterministic representation is,
generally, not available; especially, in the presence of
non-Gaussian &.



5. Structural properties of chance constraints

Major references on chance constrained optimization problems
» Continuity

e A. Il Kibzun; Y. S. Kan: Stochastic programming problems
John Wiles & Sons, 1996.

e J. R. Birge; F. Louveaux: Introduction to stochastic
programming. Springer-Verlag, 1997.

o A. Prekopa 1995: Stochastic programming. Kluwer Academic
Publishers, 1995.

» Differentiability of p(-)

o K. Marti: Differentiation formulas for probability functions.
Mathematical Programming, 75(2), 201-220, 1996.

o S. Uryasev: Derivatives of probability functions and some
applications. Annals of Operations Research, 56(1): 287-311,
1995.

» Convexity of p(-) and the feasible set P

o A. Prekopa 1995: Stochastic programming. Kluwer Academic
Publishers, 1995.



Continuity

Remark: If p(x) = Pr{g(u,&) < 0} is an upper semi-continuous function, then
feasible set P = {u € U | p(u) > a}. is a closed set.

Theorem (Kall 1987)

Ifg:UxQ — R is continuous, U and Q are closed sets, then p(u) is upper
semi-continuous and the feasible set

P={uecU]p(u)=a}

is a closed set.

Proof idea:
@ The set-valued map M(u) = {£ € Q | g(u, £) < 0} is upper semi-continuous and closed valued and
M(u) is measurable (see, Castaing and Valadier, Geletu).
@ Thus for a given a given sequence u, — uo,

,lljiljoz M(up) = m cl ( U M(un)> C M(up)

N>1 n>N

@ Then show that limsup,_, oo p(un) < p(up); i-e. p(+) is u.s.c.
References:
e P. Billingsley: Convergence of probability measures. Wiley & Sons, 1962.
o C. Castaing and M. Valadier: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics,
Vol. 580, Springer-Verlag, Berlin, 1977
e A. Geletu: Introduction to topological spaces and set-valued maps (Lecture Notes).



Continuity...Existence of solution for CCOPT

Corollary (Existence of solution)

If f is a continuous function, g : U x Q — R is continuous, U is a
compact set, and ) is closed sets, then p(u) is upper
semi-continuous and the feasible set P = {u e U | p(u) > a} is a
compact set. Hence, the chance constraints optimization problem

(CCOPT) mLEn f(u)

subject to:
Pr{g(u,§) <0} > o
ue U

has a solution.

A

Follows by the Weierstrass theorem: a continuous function attains its

optimum (minimum or maximum) value on a closed and bounded

set. O
v

™ = = —




Continuity...

Theorem (Raik 1971)
If the g : U x Q are continuous and, for each u € U C R™,

Pr(To(u)) =0, (measure-zero property)

where [o(u) = {£ € Q| gj(u, &) = 0}, then probability function
p(u) = Pr{g(u,&) < 0} is continuous; hence, the feasible set of
CCOPT

P={uecUCRP]|p(u)>a}

is a closed set. )

Hint: Proofs of the above continuity statements need the following concepts:
- convergence in distribution

- convergence in probability

- almost sure convergence

- convergence in mean (square)

properties random variables.



Convexity

Proposition

Suppose £ = a' = (a1, as,...,a,) be normally distritbuted (not
necessarily independent) random variables with mean x and
covariance matrix ¥. If p(u) = Pr{a’u < b} > o and b € R, then
the feasible set

P = {ueR™ | p(u) > a},

is convex for any « € [0.5,1].
v

Since p(u) > « is equivalent to ' u+ ®~1(a)Vu'Zu < b, the
feasible set P is convex if the function
g(u) :=pu"u+ o Ha)Vu"Zu is convex. But g is a convex w.r.t.

u if @ %(a) =0 and this holds true due to the assumption that
a € [0.5,1].




Generally, the convexity of the probability
function

p(u) = Prig(u,&) <0}

depends on
(a) convexity properties of the function g(u, §)

(b) some convexity property the pdf ¢(&) of
the random variable &.




Convexity...

A Motivational Example:

Let g(u,&) = & — r(u) and & be a scalar random variable with
distribution function ®.

Let

p(u) = Pr{§ —r(u) <0},
where r(u) is some function. Then, we have

p(u) = Pr{¢ —r(u) <0} = Pr{€ < r(u)} = & (r(v))

If

@ r(u) is concave function

@ & is such that ® > 0, non-decreasing and a log-concave

function
the [p(u) = ®(r(u)) is a log-concave function; hence, the feasible
set
P={ueR"|p(u) > a}

IS 3 convex set.



Convexity...A Motivational Example...

We use the second derivative test on the function log(®(r(u))) .
Hence the second derivative can be written as

V [log(®(r(u)))] = m (r(u)) - & (r(u) — [®'(r(v))]* | Vr(u)Vr(u)

1
[&(r(u))] ~~

<0

+ ¢(u)V r(u)

The matrix Vr(u)Vr(u)" is (a rank 1) positive definite matrix; while V2r(u)
is a negative definite matrix.

Hence, V2 [log(®(r(u)))] is a negative semi-definite matrix. Consequently,
p(u) = (P(r(w))) is a log-concave function.



Convexity...

Definition (quasi-concave probability measure)

A probability measure Pr(-) is said to be quasi-concave if
Pr(AS1 + (1 = X)S2) > min (Pr(51), Pr(Sz2))

for all convex measurable sets 51, 5> and all A € [0, 1].

Theorem (Wets 1989)

If g : R™ x RP — R is a (jointly) convex function w.r.t. (u,&) and
the probability measure Pr(-) is quasi-concave, then the feasible set

P={ueR"| Prig(u,§) <0} > a}

is a convex set for all o € [0, 1].




Convexity...

Proof.

Given o, let uy, up € P and A € [0,1] .
WTS: Avi + (1 —Nwp € P.

Define the set
S(u) = {£ € R | g(u,§) <0}

Then the sets S(u1) and S(u2) are convex and measurable and Pr(S(u1)) > «
and S(w2) > a.

For any & € S(u1) and & € S(u2) we have
g\, &) + (1= A)(u2,6)) < Aglur, é1) + (1 — N)g(ue, &) <O0.

Set uy := Aur + (1 — N)wz and &y := A& + (1 — N)&. It follows that
&x € S(un).

= Afl + (1 = )\)fz € S(/\ul + (1 = )\)UQ),Vé-l € S(Ul),sz € S(Uz)
= AS(t1) + (1= X)S(w2) € S(Aur + (1 — ANuw2)
= Pr(S(ux)) > Pr(AS(u1) + (1 — A)S(w2)) > min {Pr(S(w1)), Pr(S(uw2))} & a.

—



Convexity...

If g:R™ x RP — R is a (jointly) convex function w.r.t. (u,§) and
the probability measure Pr(-) is quasi-concave, then the probability
function

p(u) = Pr{ig(u,§) <0}.

is quasi-concave.

Remark:

(i) The result of the above theorem can be extended to

Pr{gj(u,§) <0,j=1,...,q} (joint chance constraints)

(ii) If
g(u, &) = Au+¢,

then g is jointly convex w.r.t. (u, ).



Convexity...

Definition (log-concave measures, Prekopa 1971)

A probability measure Pr(-) is said to be log-concave if
Pr(AS1+ (1= X)S2) > [Pr(Sy)]* - [Pr(S2)]

for all convex measurable sets S, 5> and all A € [0, 1].

Proposition
A log-concave probability measure is quasi-concave.

Note that: For 0 < a, b(< 1) we have

bt > [min(a, b)]* - [min(a, b)]* ™ = min(a, b).



Convexity...

Proposition

Suppose Pr(-) be a probability measure associated with a density
function ¢(§) of a random variable £ € RP such that

Pr(A) = /A 6(€)de.

for any measurable set A. If [¢ is a log-concave function , then
Pr(-) is a log-concave probability measure.

Examples:

o If Q(§) is a convex function, then any density function of the
form ¢(&) = e~ Q) is log-concave.

@ The normal distribution has a log-concave density function.

@ Other log-concave distributions: uniform, beta, gamma,
Dirichlet, etc.



Differentiability

(A) A chance constraint

p(u) =Pr{{ <u}=®(u1,...,um)

where £ is a vector of independent random variables; i.e.

P(&) = MZ16(&)-
Thus,

= [ [Tkt = [ [ s

STZP(U) bi(ui) (/ /“' 1/ / 1¢J &)dEm . .. d&i1dEij1| .. c




Differentiability...

(B) A simple chance constraint with correlated random variables

Theorem (Prekopa 1995)

If € ~ N(u,X) with a positive definite covariance matrix © € R™*™, then
probability function

p(u)=Pr{{ <u} =o(u1,...,um)

is continuously differentiable and
0]
S p(u) = Gi(ur) X S(Un, ., Uim, Uiga, - Um),

where ¢; is the one-dimensional Gaussian density function of &; and
&(u1,. .., Ui—1, Uit1,- .., Um) is the normal distribution function of

5 = (517 OO 7£i71:€i+17 OO 75’7")'

Proof idea: Use the Cholesky decomposition = = LLT, where L is an
invertible lower-triangular matrix and define the transformation

n = L"Y(& — ). Then n has a standard normal distribution.




Differentiability ... a special case

(C) A simple generalization of Prekopa (Henrion and Médller 2012)
p(u) = Pr{A¢ < u}
with A € R™*P and & ~ N (i, X) with a positive definite
covariance matrix ¥ € R™*™. Then p(u) is continuously

differentiable.

Note that:

Em N E) =17 := A ~ N (AM, AZAT) .



Differentiability...

(D) A more general nonlinear chance constraint

p(u) = Pr{g(u,§) <0}.

Assumption-D

For each u € R™, V¢g(u,§) # 0 for each £ on the boundary of the
set S(u) :={¢ € Q| g(u,§) < 0}.

Define

0S(u) = boundary of S(u) ={£ € Q| g(u,&) <0}
Fo(u) = {£€Q]g(u§) =0}

Then it follows that

Mo(u) C 9S(uw).



Differentiability...

Theorem (Uryasev 1995 , Marti 1996)
Given u € R™. Suppose Assumption-D is satisfied. If
(i) the function g : R™ x RP — R has continuous partial
derivatives V ,g(u,§) and Veg(u, ),

(ii) the random set S(-) is bounded in a neighborhood of u,
then

(a) the probability function p(-) is differentiable at u and
(b) its gradient is given by

o 5(6) .
Vplu) = /as<u> (nvgg(u,g)n Vel ’5)> @

» This formula for Vp(u) is less practical in computational
methods.




Major difficulties in CCOPT

Major difficulties

| 4

>

| 2

Generally, there is usually no closed-form analytic
(deterministic) representation for p(u)

Amenable (continuity and convexity) structures of p(u) are
available only for Gaussian distributed &.

The p(u) probability function is, generally, difficult to evaluate
directly (intractability).

= numerical or analytical approximation methods

The function p(u) can be a non-differentiable function =
smoothing approximations or non-smooth analysis strategies

CCOPT is a hard optimization problem.




Recommended Approach

Use approximation methods.

Approximation methods should:
> facilitate tractability of chance constraints
» guarantee a-priori feasibility

> enable the consideration of general probability
distributions for &

> etc




6. Some numerical methods

Linearization (Garnier et al. 2008)
Back-mapping (Wendt et al. 2002, Geletu et al. 2011)

Sample average approximation (Shapiro 2003, Pagnoncelli et
al. 2009)

Robust (Semi-infinite) optimization approach (Califore &
Campi 2005)
Analytic approximation (Nemirovski & Shapiro, Geletu et al.)



Approximation methods

(I) Linearization (Garnier et al. 2008)
Assumptions

o ¢ =(&,...,&) a vector of normally distributed random
variables with mean p = 0 and covariance matrix ¥;
o for each fixed u, g(u,-) is at least twice differentiable w.r.t. &.

For £ having a sufficiently small variance we have

p

g(u, &) ~ g(u,0)+> gg(u, 0)¢; = ao(u)+&rar(u)+. . . +Epap(u).

j=t

@ This could provide an analytic approximation
@ But works only when the variance of & is very small;

e If £ is non-Gaussian, tractability is still an issue (Nemirovski
2012) .



Approximation methods ...

(1) Back-Mapping (Wendt et al. 2002)
Idea of back-mapping
e Find a monotonic relation between Z = g(u, &) and some

random variable &;.
o That is, verify theoretically (see Geletu et al. 2011) or
experimentally that there is a real valued function ¢ such that,

forany ue U
° Z=qu(§):
e ¢, is strictly increasing (& 1 Z) or decreasing & | Z)
= & = ¢, (Z). Furhtermore
o &1 Z= Prig(u,&) <0} =Pr{¢ < ;1 (0)}.
o &§1Z= Prig(u,€) <0} =Pr{& > 0, (0)}.

Reference
@ A. Geletu et al.: Monotony analysis and sparse-grid integration for
nonlinear chance-constrained chemical process optimizationa problems.
Engineering Optimization, 43(10): 1019-1041, 2011.



Approximation methods - Back Mapping...

an

Pris s~ (0 >« Prig(u.&) <0} > u

Figure: Back projection of chance constraints

Back-mapping (, Geletu et al. 2011):
e usable only if certain monotonic relations hold true




Approximation methods - Back Mapping...

@ Hence, for ; 1+ Z, CCOPT is equivalent to
(CCOPT) min E [f(u, &)]

subject to:

p(u) = Pr{é € Q| & < oM (u)} > a,
ueU.

Now, e.g. assuming Q = RP and ¢(£) = NE_;4;(&;), we have

o) = [ L / - / Zl(u) o(6)de (28)

Vlu) = / o @) () P () (29)
i ]

p-1 |ntegrals

» However, back-mapping is usable only if monotonic relations are easy to
identify. But monotonic relations can be difficult to verify.



Approximation methods ... Robust optimization

(II1) Robust optimization approach (Califore & Campi 2005)
Robust optimization considers the (worst-case) problem

(RO)  minE[f(u£)]
subject to:

g(u,§) <0,¢e€Q,
ue U,

where g(u,&) < 0 is required to be satisfied as for many
realizations of £ from Q as possible.

Randomized solution based on scenario generation:

@ Generate independent identically distributed random samples
€., €N from Q ((Monte-Carlo method)).



. Robust optimization approach ...

e Solve the optimization problem

N
1
(NLP)ro mulnNkz_:lf(u,{k)
sit. g(u, € <0,k=1,...,N;
ueU.

Theorem (Califore & Campi 2005)

Suppose o € (0,1) and f(-,§) is convex w.r.t. u € R™. If the
number of random samples &%, ... €N

N> (12_”a)/n<1ia>+<1fa> In<é>+2m,

then the optimal solution obtained from (NLP)gro is an optimal
solution of (RO) with reliability c.




. Robust optimization approach ...

Example: According Califore & Campi
if m =10 and = 0.9999; the number of required samples should
be at least N = 1,842,089 to satisfy

Prig(u,§) <0} > a

with a = 0.9999 for the optimal u*.



Approximation methods ... Sample average approximation

(IV) Sample Average Approximation (SAA) (Shapiro 2003,
Pagnoncelli et al. 2009)

e Define
_f 0, ifg(ug >0
H(O,Jroo] (G(u,f)) = { 1, if g(U,f) <0.
o Generate a sequence of deterministic points {¢1,..., ¢V} € Q

with low discrepancy property; e.g. Quasi-Monte-Carlo
sequences like Fourer, Sobol or Niederreiter etc.

o Replace the chance constrains with

1

pn(u) = N I(—o.0 (8(1,69)) = a.

™=

x
Il

1

This is a relative frequency-count approximation of chance
constraints.



Approximation methods ... SAA ...

e Solve in stead of CCOPT the deterministic optimization problem

N
1 B
(NLP)san min > F(u, 89
k=1
1 N
k
s.t N;H(mm (g(u,{ )) > o
ue U

SAA preserves convexity structures

avoids the need to compute integrals

feasibility of solution obtained from (NLP)saa to the CCOPT
is guaranteed only for a very large sample-size N

In RO and SAA methods, guaranteeing the feasibility of
approximate optimal solutions is very expensive.



“If you only do what you can do,
you'll NEVER BE MORE than
you are now.”




Smoothing inner-outer approximation method
Geletu et al. 2015, 2017

@ To develop analytic approximation methods for CCOPT with
a general (non-convex) constraint function g(x, &)

@ To consider both Gaussian and non-Gaussian continuous pdf

¢(¢)
e To facilitate tractable solution of CCOPT problems for
large-scale engineering applications



Smoothing inner-outer approximation ... Contributions

On Finite dimensional CCOPT

@ A. Geletu, M. Kléppel, A. Hoffmann, P. Li, (2015). A tractable approximation
of nonconvex chance constrained optimization with non-Gaussian uncertainties.
Journal of Engineering Optimization, 47(4), pp. 495 - 520.

@ A. Geletu , A. Hoffmann, M. Kléppel, P. Li, (2017). An inner-outer
approximation approach to chance constrained optimization. SIAM Journal on
Optimization, 27(3), 1834 - 1857.

@ A. Geletu, A. Hoffmann, P. Li, (2019). Analytic approximation and
differentiability of joint chance constraints. Optimization, 68(10), 1985-2023.

Infinite dimensional CCOPT

@ A. Geletu, A. Hoffmann, P. Li, (2016). Chance constrained optimization on
Banach spaces. 14th EUROPT Workshop on Advances in Continuous
Optimization Warsaw (Poland), July 1-2, 2016.
http://www.europt2016.ia.pw.edu.pl/schedule/FD-4.html

@ A. Geletu, A. Hoffmann, P. Schmidt, P. Li, (2020). Smoothing methods to
chance constrained optimization of elliptic PDE systems. ESAIM: COCV,
26 (2020), 1-28.




Smoothing inner-outer approximation ...

p(u) = Prig(u,§) <0} > a

o / o(6)de > a
g(u,£)€[0,+00)

& Efh(g(u )] <1-a

1, ifs>0, .. .
h(s) := { 0 ifs<0, (Heaviside step function).



Smoothing inner-outer approximation ...

Define

_J o, ifg(ug <o
i€l = { 1, if g(u,&) > 0.

Prig(u,£) >0} = E[h(u, E)]

Pr{g(u,§) <0} >a < E[h(u,§] <1-a.




Smoothing nner-outer approximation ...

(CCOPT) min E[f (x,8)] (30)
subject to:
E[h(x,8)]<1-« (31)
x € X. (32)
Drawback

@ E[h(x,£&)] can be discontinuous and hard to work-with.
Idea
@ Design a smoothing approximation to E [h(x, &)].



Smoothing Inner-outer approximation ...

@ to develop a smoothing analytic approximation to the
probability function

(1 = p(u)) = E [h(g(u,£))]

@ to guarantee
- (apriori) feasiblile points to the CCOPT
- approximate solution of CCOPT by avoding the direction
evaluation of p(u)



Smoothing inner-outer approximation ...

Geletu-Hoffmann (GH) function

The parametric family (Geletu et al. 2015, 2017, 2020)

O(r,s)= — 1T M7 fr r€(0,1), s€R, (33)
14+ mrexp (—%)

satisfies properties P1-P5, where m;, m; are constants with
0 < my < myp/(1+ my),. Define also, M(7,s) := ©(r, —s). Thus,

1—-0(r,s) < h(—s) < ©(r,—s) =MN(1,s) (34)

Approximation functions

Define the functions (Geletu et al. 2015, 2017)

(7, u) E[S(r, g(u, )], (35)
(7, u) E[N(7, g(u, )], (36)

where 7 € (0, 1).



Smoothing inner-outer approximation ... Problems

Inner-outer approximation problems >

Inner Approximation Outer Approximation
(IA;)  min, F(u) (OAT) min, F(u)
s.t.
P(ru) <1-—a, so(T U)
ue U,7€(0,1). u€ UTE(O 1).

Respective feasible sets of IA and OA
M(7)={ueU|y(r,u) <1-a},7€(0,1),
S(r)={uelU|p(r,u)>a},7€(0,1).



Smoothing inner-outer approximation ... Properties

Geletu et al. 2015

Suppose 0 < 75 < 711 < 1 and g(-,£) is continuous w.r.t. u. Then,

(1) monotonicity: For u € U,

@(Tlv u) 2 90(7—27 u) 2 p(u) >1- 1!’(727 u) >1- d)(Th u)'

(2) smoothness: i)(r,-) and o(7,-) are smooth if g(+,&) is
smooth, for each fixed 7 € (0,1).

(3) tight approximation: For each u € U,

p(u) = inf o(r,u) and sup (1—(7,u)) = p(u),
7€(0,1) 7€(0,1)
(37)




Smoothing inner-outer approximation ... Properties

Figure: Convergence of © to h



Smoothing inner-outer approximation ... Properties...

Feasible set of CCOPT: P ={u € U | p(u) > a}
(1) inner-outer approximation

M(7r) € P C S(7), for any T € (0,1).
(2) monotonicity of the inner-outer approximations
M(7m) C M(m) C P C S(m1) C S(m), for0<mp <1 < L.
(3) convergence of the feasible sets of the approximations

lim M(7) =P, (1) =P,

lim S
T\0* T\0*

(4) Painlevé - Kuratowski convergence (with My := M(7y),
Sk := S(7k) for {7k }ken C (0,1) with 7, N, 0T):

lim My=Pand I|lim S,="7P.

k——+o00 k——+o00



Smoothing inner-outer approximation ... Properties...

S(7]

Figure: Inner-Outer approximation for the feasible set of CCOPT



Inner-outer approximation ...

Convergence of Gradients ...Geletu et al. 2015, 2017

(iii) If g(-, &) differentiable function, Vug(u,-) is Legesgue measurable w.r.t.
&, and there is a Lebesgue measurable function v : Q@ — R such that
IVug(u, €)| < v(r.f;“), almost surely for &€ € Q, then the function (7, -)
and ¢(, -) are differentiable w.r.t. u and

00(r,
vi-vtna) = - [ e
Q 5 =
s=g(u,§)
00(r,
Volru) = - [ 250 V(1 )0(€) .
Q =
s=—g(u,g) )
Note that:
° ¢f(7,(u) and (7, u) are differentiable irrespective of the differentiability
of p(-

—>  IA; and OA; are smoothing approximations of CCOPT.

@ The formulae for V(1 — ¢ (7, u)) and Vo(r, u) are simple to use than
those by Uryasev and Marti.



Inner-outer approximation ...

Properties ...Geletu et al.

(iv) If the same assumptions as in Marti 1996, Uryase 1995 hold
true, g(+,€) and p(-) is a differentiable, then

0 V(. u) = ~Vp(u) andlim Vep(r. u) = V()

(iv) Let {7« }xen is any sequence of parameters such that 74 \, 0T
and {u7, }ken is the corresponding sequence of optimal
solutions of (IA),, (or of (OA);, ). Then any limit point of
{u7, }ken is an optimal solution of CCOPT.




Inner-outer approximation ...

Algorithm 1: Conceptual inner-outer approximation method

1. Choose an initial parameter 79 € (0,1);

2: Solve the optimization problems (IA),, and (OA),;

3: Select the termination tolerance tol;

4: Set k<0

5: while (|fja(uf,) — foa(ds, )| > tol) do

6:  Reduce the parameter 74 (e.g., Tk+1 = p7k, for p € (0,1));
7 Set k +— k+1;

8:  Solve the optimization problems (IA);, and (OA),,;

9: end while

Here
o uy and Uy, are optimal solution of (IA);, and (OA),,, resp.
o fia(u;,); foa(Ur,x) are optimal objective values
@ The algorithm terminates when the optimal values of the
inner and outer approximations are almost equal.



5. Example: An engineering problem

Consider the reactor network design problem (Wendt et al. 2002)

K ke ke
PR ASBSC

———»

Cr=1[1T: | Vu Ca T | W Cro
> Ce: e Cez

@ Ca,Cp;, Vi, and Ti(i = 1,2) are the concentration of the
components of A and B, the volumes and temperatures of both
reactors, respectively.

@ kinetic parameters (the activation energy and the frequency factor
in the Arrhenius equation) are uncertain.

Objective: To determine the minimum cost design strategies
guaranteeing high reliability of satisfaction of product specifications.



An engineering problem ...

By defining uj = Vj, xi = Ca,, Xi12 = Cg,, for i =1, 2,

(CCOPT) min {f(u) = Vi1 + Viz} (38)
subject to:
x1+ ki(&)xu =1, (39)
xp — x1 + ka2 (&)xoun = 0, (40)
x3+ x1 + k3(&)xzup = 1, (41)
x4 —x3+x0 — x1 + ka(§)xaup =0, (42)
Pr{xs > Xmin} > a, (43)
0<u <16, 0< up < 16, (44)

ki(§) = &iexp(=&/RT1), ko(§) = &1 exp(—E3/RT2)
ks(§) = Soexp(—&a/RT1), ka(§) = Eaexp(—E2/RT2),
a € [0.5, l], RT: = 5180.869 and RT>, = 4765.169.



An engineering problem ... Compact form

By solving the model equation (39)-(42) we obtain

kouo(1 + kyuy + ksup) + kyug

xa(u, &) = (14 kyur)(1 + kown)(1 + ksus)(1 + kqus)
Hence,
(CCOPT) min {f(u) = /o + v/u2} (45)
uec
subject to:
Pr{xa(u,&) > Xmin} > «, (46)
0<wu; <16, 0<wp, <16,  (47)

Note that: g(u,&) = —xq4(u, &) + Xmin



An engineering problem ....Inner-outer approximation

(CCOPT) min{f(u) = vin + v}

subject to:
Pr{7X4(U7§) + Xmin < O} > a,
0§U1§167 OSU2§167

Approximation functions

£ [ 1+ myr

14 mpr exp(—%(—x4(uy &) + Xmin))
£ { 1+ mr

14 mor exp(%(—m(u7 £) + Xmin))

QZ)(T, U) = E[egh(Ta 7X4(U7 6) + Xmin)] =

99(7'7 U) = E[egh(T» X4(ua 5) - Xmin)] =




A numerical example ...

k(&) =

§1exp(—€3/RT1), ka(§) = E1exp(—E3/RT2)
§2exp(—8a/RT1), ka(§) = Eaexp(—§2/RT2),

a=0.9,RT; =5180.869 and RT> = 4765.169.

Correlation matrix

Expected value | Standard deviation
& 0.715 0.0215
& 0.182 0.0055
& 6665.948 200
& 7965.248 240

1 05 03 0.2
05 1 05 01
03 05 1 03
02 01 03 1

Table: Mean, standard deviation and correlation matrix of the random

variables




A numerical example ...

—e— IAA
o —=— OAA.
T T T T T
1 100

10.000 1e+06
-

Figure: Optimal objective function values of IA, and OA, for decreasing
values of 7.

@ IA; and OA, are solved using IpOpt.

o Integrals are evaluated using quasi-Monte Carlo samples.
e For 7 =107,

Pr{xa(ufs ,&) > 0.5} — Pr{xa(upa,,&) > 05} ~4.8x107>.



Inner-outer approximation ...

Advantages:

@ A nonsmooth CCOPT can be approximately solved by solving
smooth nonlinear optimization problems

@ The problems IA; and OA; can be easily soleved by a
gradient-based algorithm

@ The problem /A, guarantees an a-priori feasible approximate
solution to CCOPT

@ The inner-outer approximation can be used irrespective of the
distribution of &

Disadvantages

@ Requires intensive computations due to the need to evaluate
multi-dimensional integrals

@ The choice of 7 should balance tighter analytic approximation
and computational accuracy



8. Current research topics

1. Chance constrained optimization on Banach spaces

e D

(CCBS) mLin E[J(u,y,&)] (48)
subject to:

A(u,y, &) + BC =0, (49)

Prig(u,y,§) <0} 2a,  (50)

Umin < U < Umax (51)

uceE, (52)

where A is an operate acting on the behavior y of the system
on a Banach space, E is a reflexive Banach space.




8. Current research topics ...

2. Chance constrained mixed integer problems

p
(CCPDE) min £ lly = yal2g0y| + S lulZ2(0)

subject to:

—V(k(x,6)Vy) = kauxék) in D ae. Q,

k=1
y|8D = g(Xa§p+1)7 a.e. 97
Pr{yﬂﬁ" < y < Ymax < 0} > «,

u e u =] {U (= L2(D) ‘ Umin S u S Umax}7

The variable ¢ T = (&, &1, -+, &p, €pr1) is random.

\. J

Ref: A. Geletu, A. Hoffmann, P. Schmidt, P.Li.: Chance constrained optimization of elliptic PDE systems with a

smoothing convex approximation. ESAIM: COCV, Volume 26, 2020.



8. Current research topics ...

3. Chance constrained model predictive controller of a
semilinear parabolic PDE system

(CCMPC)
t,4+H
min {J(u) =E [ / {0, 6,) = a8, gy + 5 e, ~)||i2(D)}dt] }

subjected to:
dy .
i Vi [k(x,6)Vxy] = f(u,x,t) in Q X £,

—koVy -n=g(y,t,x) on (t,£+ H] x 9D x Q,
Y, %) = i, (<) in D,

Priy(u,&t,x) < ymax} > @, in Q,

Umin < u(t,x) < Umax, in Q,

%z+l = %Z+l +At,z=1,.., Nt":

where
® DCR"(n=1,2,3)
@ (%,,%, + H] is a prediction time-horizon of finite length H
@ Q:=(%,% + H] x D;



Current research topics ...

Fault-tolerance and safety tubes (corridors) for stochastic MPC.

(f,ier] (1, + H] (#,% + H) (£,¢ + H]

Figure: Deterministic tubes generated through the inner- outer
approximation over prediction horizons, for decreasing values of the
approximation parameter 7, > T > T3 > 4.

Ref:R. Voropai, A. Geletu, P. Li: Model predictive control of parabolic PDE systems under chance constraints. (to

be submitted)



8. Current research topics ...

4. Chance constrained mixed integer nonlinear programming
(MINLP) problems

(CCMINLP) rDlzn E[J(u,z,y,8)] (53)
subject to:

G(u,z,y,§) =0, (54)

Prig(u,z,y,§) <0} > a, (55)

Umin < U < Umax (56)

z€{0,1}9, u e R™ (57)

Ref: A. Tesfaye, A. Geletu, B. Guta: Chance Constrained Mixed-Integer Nonlinear Programming and Applications.

(in progress)



Open issues

@ Since p(u) is generally not differentiable

@ what are the convenient sub-differential
characterizations of p(u) (Clark subdifferentials,
Mordukhovich subdifferentials, Frechet subdifferential,
etc.)

@ what are the relationships between a subdifferential of
Op(u) and the set of gradients {V (7, u)|T € (0,1)} of
the smoothing function (resp. {Vy(7, u)|T € (0,1)})

@ Convex inner-outer approximation

@ If (CCOPT) is a convex function, then the outer
approximation (OA); is convex. (Geletu et al., 2020)

@ However, the inner approximation (IA), with the GH
function may not be convex, even if (CCOPT) is a

convex problem.

Idea: (i) Design (a new) or use another function ©(r,s) for the inner
and outer approximation.
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