A reduced-space method for chance constrained
optimization problems with inner-outer
smoothing approximations (a tutorial)

Dr. rer. nat. habil. Abebe Geletu
E-mail: abebe.geletu®@tu-ilmenau.de

German Research Chair
(Applied Mathematics and Artificial Intelligence)
AIMS Rwanda

3 Ic
£ AIMS g
.5 Alexander [~
W o s von Humboldt Deutscher Akademischer Austausch Dienst
RWANDA Stiftung/ Foundation

German Academic Exchange Service

Introduction
The reduced-space method

Smoothing inner-outer approximation - overview

> Q9 =

The reduced-space method for inner-outer
approximation problems

5. Some comments on parallel implementation
6. An exercise

7. References

1. Introduction

General form

The general form of chance constrained Optimization.
(CCOPT) min{ E[f(x, u,&)]} (1)
subject to:
G(x,u,§) =0, (2)
Prig(u,x,§) <0} >a, (3)
ueld C R, (4)

e ¢ (€ Q CRP)-random vector with continuous pdf ¢(¢)
@ ¢ is associated with a complete probability space (2, X, Pr)
@ u - deterministic decision variable

@ x - state variable (dummy variable)

1. Introduction ... problem parts description

Assumption: The functions f, g : R™ x RP — R are at least
one-time differentiable.

Equality constraint: G(x,u,§) =0
@ arises as a model equation of physical process
e G(x,u,&) =0 implies that both decision u and random
variable £ have influence on the state variable x; i.e., x(u,§) .
Objective function: E[f(x, u,¢)]
@ by definition

Elf(x, u.€)] = /Q F(x, u, €)0(€)de

is a multidimensional integral if £ € RP.
o E[f(x,u,&)] = f(x,u) if £ does not appear in the objective

1. Introduction ... problem parts description...

Chance (probability) constraint: Pr{g(u,x,£) <0} > «
@ The expression Pr{g(u,x,&) < 0} is a compact form for

Pri¢ e Q| g(u,x,£) <0}

o Integral representation

Prig(u,x,€) < 0} = / o(€)de
{£eQ | g(u,x,£)<0}

@ Probability function

p(u) := Pr{g(u,x,€&) <0} (defintion),

Note that:

o p(u) = Pr{g(u,x(u,x),§) <0}
o p:UCR™[0,1].

o « reliability level, & commonly a pre-given value near 1.

1. Introduction ...

Modern applications areas of CCOPT

Risk-metrics and portfolio optimization

(Planning or managerial) decision making under
uncertainties

Reliability-based engineering design optimization (design
with fault-tolerance)

Predictive control (decision making) on a moving
horizon in the presence of uncertainties

Optimum decision making for maximum probability of
gains (profits) (or with minimum probability of losses
(defaults)

Designing reliable machine learning models

etc.

2. Reduced space method

Consider a nonlinear optimization problem

(NLP) min f(x,u) (5)
subject to:

G(x,u)=0 (6)

g(x,u) <0 (7)

uelU ={ueR"| tmin < U< Unax}, (8)

where Umin, Umax € R™ are given (fixed) lower and upper
bound vectors; i.e., U is a box constraint on u.

Problems of type (NLP) arise from CCOPT, discretized optimal
control problems, or from optimization with PDE constraints,
etc. Commonly, a few decisions (controls) v than state
variables x; i.e., m << n.

2. Reduced space method ... Idea

N
Generally, if x is not a decision variable and there are a lot of x's,
do not involve the x's directly in the optimization procedure.
Thus, for a given u € U, we solve for x from G(x,u) = 0 to
obtain x in terms of u; i.e., x(u).
Hence,

@ we avoid x and drop the model equation (equality
constraints) G(x, u) = 0 from direct consideration in the
optimization procedure.

g J
Reduced problem
(NLP)Red min f(x(u), u) 9)
u
subject to:
g(x(u),u) <0 (10)

uelU = {U eR™ | Umin < U < Umax}a(]-l)

2. Reduced space method ... Idea

@ Any gradient-based algorithm to solve (NLP)geq uses the
iteration scheme

utk) — () 4 adi, k=0,1,2,...

@ The search direction di and the step-length «ay are computed
(at least) using
(i) the values f(x(u¥), u(") and g(x(u%), u¥); and
(i) gradients V,, [f(x(u®), u®))] and V, [g(x(u®)), ul)].
The data at (i) and (ii) need to be made available to the
optimization solver.

(")
Note that, for F(u) = f(x(u), u), we have
OF (u) ox(u) Of(x(u),u) .
= — 1
auj vXf()((u)7 U)O auj + 8UJ 7./) 7m

Here, o represents dot (or scalar) product.
\. J

2. Reduced space method ... Idea

Since x is a vector, we have

Oxy (u)
duj
0o (u)
Ox(u) _ | "ou ER =1 m
an . 5 DR
Oxa(u)
Au;

The derivative of vector x(u) w.r.t. the vector u is represented by the matrix
8X(u)

9x(u) 0x(u) nxm
Dyx(u) = D 8u2| | ERT
])
Therefore, we can write
VF(u) = [Dux(u)]TVXf(x(u), u) + Vuf(x(u), u). (12)
Similarly, setting g(u) := g(x(uv), u),
Vg(u) = [Dux(u)] " Vag(x(u), u) + Vug(x(u), u). (13)
N\ J

2. Reduced space method ... Idea ...

-
A representation for [D,x(u)] is obtained through the total

differentiation of the system of equations G(x(u), u) = 0 w.r.t.
u.

[Dux ()] Vi Gy(x(u), u) + VuGy(x(u),u) =0, =1,...,q.
(14)

Assuming the system G(x(u),u) = 0 consists of g equations.)

\

Remark:

Observe that, once u is given and x(u) is found by solving

G(x(u),u) =0, the vectors V,Gp(x(u), u) and V,Gp(x(u), u),

¢=1,...,q, in equation (14) are easy to determine. Subsequently,

D,x(u) is found by solving the linear system of equations (14).

2. Reduced space method ... A general algorithm

Algorithm 1: A general algorithm of the reduced space method

10:

A

: Choose a termination tolerance € > 0 (e.g., ¢ = 10E — 7, etc.);

: Choose an initial iterate u(9);
Set k < 0;
while (termination criteria not satisfied) do

Solve the system of equations G(x, u(k)) = 0 for x to obtain x(K) = x(u(K) ;
Determine Dyx(u®)) by using x(u(k)) and solving the system

[Dux()] T VxGo(x(u), u®)) + ¥, Go(x(u®)), uly =0, =1,...,q.

Use the results from Steps 6 and 7 to obtain the values f(x(u*), u(¥)) and
g(x(u¥), utk); and gradients Vv, [f(x(u(k)), u(k))] (from eqn. (12)),
Vu [g(x(u(k)), u(k))] (from eqn. (13)).
Determine a search direction dy and step-length «a ;
Update the iterate
o D) = () 4o dy

Set k <+ k+1;

11: end while

2. Reduced space method ... A general algorithm...

Each iteration of the reduced space Algorithm 1 needs the solution
of

@ the nonlinear system G(x, u(¥)) =0, and
@ the solution of the linear system

[Dux(u)] " Vi Go(x(u®), u®) + ¥, Go(x(u®)), utk)) = 0,
{=1,...,q.

Suggestion: To solve (NLP)ges use the optimization solver

- IpOpt: https://coin-or.github.io/Ipopt
- also try pylpOpt: https://github.com/xuy/pyipopt
in conjunction with solvers of nonlinear and linear systems of

equations.
- GAMS s also a very good choice (licensed version includes IpOpt)

J

2. Reduced space method ... some large-scale equation
solvers...

Solvers for (large-sacle) nonlinear equations:
@ KINSOL: https://computing.linl.gov/projects/sundials/kinsol
@ NITSOL: https://users.wpi.edu/walker/NITSOL/
o dfsane:
https://www.rdocumentation.org/packages/BB /versions/2019.10-
1/topics/dfsane
@ GSL: https://www.gnu.org/software/gsl/doc/html/multiroots.html
Solvers for (large-sacle) linear equations:
@ PARDISO: https://www.pardiso-project.org/
@ Harwell Software Library: https://www.hsl.rl.ac.uk/

@ Armadillo: https://arma.sourceforge.net/
https://sourceforge.net/projects/arma/

pyarmadillo:https://gitlab.com /jason-rumengan /pyarma
Eigen: https://eigen.tuxfamily.org/dox/index.html

2. Reduced space method ... some large-scale equation
solvers...

... large-sacle linear equations solvers...
@ csparse:
https://people.sc.fsu.edu/ jburkardt/c_src/csparse/csparse.html
o UMFPACK:
https://people.sc.fsu.edu/ jburkardt/f77_src/umfpack/umfpack.html
@ SuiteSparse:
https://github.com/DrTimothyAldenDavis/SuiteSparse
The last three libraries are related to the work of Tim Davis.

For more read:
@ Tim Davis etal. A survey of direct methods for sparse linear
systems, Acta Numerica (2016), pp. 383566. (available online)

@ Timothy Davis (Book): Direct Methods for Sparse Linear Systems.
SIAM 2006.

Wherever possible use shared- or distributed-memory parallel
implementation.

3. Smoothing inner-outer approximation - overview

Recall the chance constrained optimization problem

(CCOPT) muin{E[f(X, u,)]} (15)
subject to:

G(x,u,&) =0, (16)

p(u) = Pr{g(u,x,€) <0} > a, (17)

ueld C R, (18)

s

Assumptions:

@ For each fixed u and realization of the random variable £, we
can solve G(x, u,&) = 0 to obtain x(u,).

© (MZP) The set I'g(u) :={6 € Q| g(x(u, &), u,&) =0} is of

measure zero.

3.Smoothing inner-outer approximation ... Properties

Reduced form

(CCOPT) muin E[f(u,&)] (19)
s.t.
p(u) = Pr{g(u,§) <0} = (20)
ue U, (21)
with £(u,€) = F(x(u,€), u,€) and g(u,) := g(x(u,£), u,).

Major difficulties with CCOPT:
@ the probability function p(u) is difficult to directly evaluate
@ commonly p(u) is non-differentiable and non-convex
@ the knowledge of differentiable or convexity do not provide
simpler evaluation schemes for p(u) and Vp(u)

@ generally, CCOPT belongs to the class of hard optimization
problems

3. Smoothing inner-outer approximation - overview

p(u) = Pr{g(u,§) <0} > a

& 1-p(u)="Pr{g(u,§) 20} <1-a
& E[h(g(u,§))] <1—a (see tutorial slides)

h(s) := { é: :; § z 8: (Heaviside step function).

3. Smoothing inner-outer approximation

Geletu-Hoffmann (GH) function

The parametric family (Geletu et al. 2015, 2017, 2020)

O(rs)= — 2T MT___ o re(01), sER, (22)
14+ mrexp (—%)

T

where my, my are constants with 0 < my < m/(1 + my). Define also,
MN(r,s) := ©(r,—s). Thus,

1—0(r,s) < h(—s) < ©(r,—s) = N(1,s) (23)

3 0 S 3
Figure: Convergence of © to h

3. Smoothing inner-outer approximation ...

(step) function h(s).

The Geletu-Hoffmann function ©(7,s) is a smoothing and
monotonically convergent approximation of the heaviside

Define the functions (Geletu et al. 2015, 2017)

P(7,u) E[O(r, g(u,)],
(7, u) E[N(r, g(u,)],

where 7 € (0,1).

Smoothing Approximation functions for 1—p(uv) and p(u)

(24)
(25)

3. Smoothing inner-outer approximation ... Problems

Inner-outer approximation problems >

Inner Approximation Outer Approximation
(IA;) min, F(u) (OA;) min, F(u)
s.t. s.t.
P(ru) <1—a, (T, U)
ue U,7€(0,1). u€ UTE(O 1).

Respective feasible sets of IA and OA.
M(r)={ueU|y(r,u)<1-a},7€(0,1),
S(r):={ueU|e(r,u)>a},7€(0,1),
where F(u) == E [f(x(u,£), u, £)].

3. Smoothing inner-outer approximation ... Properties

Geletu et al. 2015

Suppose 0 < 72 <71 < 1 and g(+,£) is continuous w.r.t. u. Then,

(1) smoothness: ¥(7,-) and (7,) are smooth if g(-,£) is smooth,
for each fixed 7 € (0,1).

(2) monotonicity: For u € U,

(1, u) > p(m2,u) > p(u) > 1 =p(12,u) > 1 —Y(11, u).

(3) tight approximation: For each u € U,

p(u) = inf o(r,u) and sup (¢(7,u)) =1— p(u),
7€(0,1) 7€(0,1)

(4) Convergence of the feasible sets: M(r) C P C S(r), for all
7€ (0,1), and
lim M(r) =P, lim S(r)="P,
TN\01 TN\01

monotonically.

3. Smoothing inner-outer approximation ... Properties...

S(7]

Figure: Inner-Outer approximation for the feasible set of CCOPT

3. Inner-outer approximation ...

Convergence of Gradients ...Geletu et al. 2015, 2017

(4) If g(-,&) is differentiable function, the under standard assumptions the
functions (7, -) and ¢(7,) are differentiable w.r.t. v and

vi-wtnw) = - [e
2 s=g(u,€)
Voru) = - [20 Va0, £)0() 0.
o s=—g(u.)
Note that:

@ (7, u) and (T, u) are differentiable irrespective of the differentiability
of p()
o IA; and OA, are smoothing approximations of CCOPT.

@ If p is differentiable, then Vi (r, u) converges to —Vp(u) and V(7 u)
converges to Vp(u).

(For further details, see tutorial slides)

4. The reduced-space method OA-IA problems

(a) Generate sufficient samples € @ €M) for the random
variable £&. (Use any one of quasi Monte-Carlo, Latin Hyper Cube,
or Sparse-grid samples, etc.)

(b) For a given u and the samples €W @ £N) solve the system
of equations

Glx,u, €My =0,i=1,...,N,

to obtain x(u, &), i=1,...,N.
(c) Efficiently evaluate multidimensional integrals associated with

(x(u, &), u,)], ¥(7, u) = E[O(, g(x(u;), u, £))]
ore) “EE a0
(d) Efficiently evaluate the gradients V,E)i(x(u,f), u,§)],

Vi S vttt it el

(Conditions guaranteeing to exchange operators VE((-)) = VE(V/(-)) are to be found in Geletu

etal. 2015 and references therein.)

4. The reduced-space method OA-IA problems

Consider only the problem (IA);.
For a given u, let the values x(u, f(i)), i=1,...,N are available. Then we write for
@ objective function

F(u) = E[f(x(u,£), u,€)] = *Zf(x u,€0), u,0) (26)
i=1
@ for a given 7 € (0, 1), the constraint
P(ru) = *Z@(T g(x(u,€7),u,60))~(1 -) (27)
i=1

@ the gradient of objective function

VF(u) = Vo (E[f (x(u,6), u,€)]) ﬁ{[m(uf)] | Tt ((,€0), 0,60

i=1

2\'-‘

+ Vuf(x(u,€0), u,60) } (28

4. The reduced-space method OA-IA problems

@ gradient of the constraint function

N

Vup(r,u) =~ % Z o'(r, g(x(u, E(i)), u, é(i))) « (29)
i=1

{ [DUX(U, f(i))] T Vg (x(u, €0, 1, €0 + Vg (x(u, €7), u, 5(,-))}

The derivative w.r.t. s of the scalar function ©’ (is easy) and

/ _ mp(1+ miT)exp(—£)
O'(r,s) = T[1 + marexp(—=)]2

4. A reduced space algorithm for the outer approximation

AlgOI’ithm 2: A reduced space method for (IA) 7, (74 fixed)

1: Choose a termination tolerance & > 0 (e.g., e = 10E — 7, etc.) and small 7, € (0, 1);
2 Generate sufficient samples ¢ i =1,..., N, from Q according to ¢(&);
3: Choose an initial iterate u(®;
4: set k 0;
5: while (termination criteria not satisfied) do
6: Solve the system of equations
Golx,u®, My =0,0=1,. .., qi=1,...,N, (30)
for x to obtain x(¥) = x(u®), Wy i=1,... N;
7: Determine Dux(u“‘), 5(’)), i=1,..., N by using x(u(k), 5(’)), i=1,...,N, and solving the system
[Dux@®, €N)] T v, 6™, 69), u, €0)4 9, Gp(x(w®, 9), u, €D =0, 0 =1 gii =1 N (31)
8: Use the results from Steps 6 and 7 to obtain the function values F(u¥) (from eqn. (26)) and v (7, u®)) (from eqn.
(27)); the gradients v F(u(¥)) (from eqn. (28)) and V(7 , ul¥)) (from eqn. (29)).
9: Determine a search direction dj and step-length oy ;
10: Update the iterate
yk D) = () + apdi

11: setk+ k+1;
12: end while

4. A reduced space algorithm ...

Remark:

@ In Algorithm 2 is designed for a fixed (small) parameter
Tk € (0, 1).

@ It is easy to adapt Algorithm 2 to the outer approximation
problem (OA),, for a given 7, € (0,1).

@ To guarantee the convergence of solutions of (IA),, and
(OA),, to an approximate solution of CCOPT, we need to
solve these problems for a sequence {7y }xen, where 7, N\, 0.

= we need an outer-loop w.r.t. 7, over Algortihm 2 for
both (IA),, and (OA),.

@ we solve (I1A);, and (OA);, repeatedly for decreasing values of
Tk, and we stop the outer-loop when the objective functions
values of (IA)., and (OA),, are sufficiently close.

4. Algorithm for approximate solution of CCOPT

Algorithm 3: Inner-outer approximation

LONDARWN

Choose an initial parameter 7o € (0,1);
Solve the optimization problems (IA),, and (OA);
Select the termination tolerance tol;
Set k<0
while (!F/A(Ll;tk) — FOA(E;*k)| > to/) do
Reduce the parameter 7« (e.g., Tkt1 = p7«, for p € (0,1));
Set k+ k+1;
Solve the optimization problems (IA);, and (OA)., using Algorithm 2;
end while

5. Some comments on parallel implementation

What can implemented in parallel?

@ In Algorithm 3, (IA);, and (OA),, can be solved in parallel.
@ Observe that the solution of equations (30) and (31) can be

parallelized for the samples ¢, i =1,..., N. Moreover,
large-scale equations posses sparse and block-structured
matrices which can be exploited for parallelization.

@ The values F(uX), ¥ (k, u®),VF(uk)), Vip(i, ut®) in
Step 8 of Algorithm 2 can be obtained through parallel
computation.

@ Generally, use a combination of distributed memory (e.g.,
using MPI) and shared-memory parallel implementations.

7

The best way to learn is to do it yourself!]
\

6. An exercise (adapted from the tutorial slides)

(P)

x1+&ixqup =1,

min {f(u) = Vur + V/i2}

subject to:

Xxp — x1 + &xour =0,
X3+ x1 + &3x3u; = 1,
X4 — X3 + X0 — x1 + Eaxatio = 0,

Pr{xs > Xmin} > «,

0<u; <16, 0< u, < 16,

Expected value

Standard deviation

Correlation matrix

& 0.715 0.0215 1 05 03 02
& 0.182 0.0055 05 1 05 01
& 6665.948 200 03 05 1 03
&a 7965.248 240 02 01 03 1

Table: Mean, standard deviation and correlation matrix of the random
variables (i.e., normal distribution)

6. An exercise ...

()

Exercises:
@ Write the reduced form of (P)
@ Set-up inner and outer approximation problems for (P)

© Generate sufficient and efficient samples for &q,..., & from
R* according to the normal distribution.

Note:

- Some sample generators may need de-correlation of the random
variables.

(see Geletu etal.(2011). Monotony analysis and sparse-grid integration for nonlinear chance
constrained process optimization. Engineering Optimization, 43(10), 1019-1041.)

- Mostly quasi Monte-Carlo samples (e.g., Sobol sequences).

- Samples can be generated once and used repeatedly.

- However, adaptively increasing samples may provide better results.

@ Solve the problems (IA),, and (OA)., (in parallel) for
decreasing values of 74 € (0,1). (e.g., use IpOpt).

© Demonstrate graphically, how the optimal objective function
v?lues of (IA);, and (OA),, get closer with decreasing values
of Tk.

7. References

@ Geletu, A., Hoffmann, A., Kléppel, M., Li, P., 2017. An inner-outer approximation
approach to chance constrained optimization. SIAM Journal on Optimization, 27(3),
1834 - 1857.

@ Geletu, A., Kléppel, M., Hoffmann, A., Li, P., 2015. A tractable approximation of
nonconvex chance constrained optimization with non-Gaussian uncertainties. Journal
of Engineering Optimization, 47(4), pp. 495 - 520.

@ Geletu, A., Kléppel, M., Zhang, H., Li, P., 2012. Advances and applications of
chance-constrained approaches to systems optimization under uncertainty.
International Journal of Systems Science, 44(7): 1209-1232.

@ Geletu, A., Li, P., 2014. Recent developments in computational approaches to
optimization under uncertainty and application in process systems engineering,
ChemBioEng Reviews, 1(4), 170-190.

@ Geletu, A., Hoffmann, A., Kléppel, M., Li, P. 2011. Monotony analysis and
sparse-grid integration for nonlinear chance-constrained chemical process
optimizationa problems. Engineering Optimization, 43(10): 1019-1041.

@ Kiléppel, M., Geletu, A., Hoffmann, A., Li, P., (2011). Using sparse-grid methods to
improve computation efficiency in solving dynamic nonlinear chance-constrained
optimization problems. Industrial Engineering Chemical Research, 50, 5693-5704.

@ Kiléppel, M.: Efficient numerical solution of chance constrained optimization problems
with engineering applications. Ph.D. Dissertation, Faculty of Mathematics and
Natural Sciences, TU limenau, Germany, 2014.

@ Lazutkin, E.: Efficient solution approach to nonlinear optimal control problems and
applications to autonomous driving. Ph.D. Dissertation, Faculty of Computer Science
and Automation, TU limenau, Germany, 2018.

